
WHITE PAPER

Infrastructure from Code
Solution Overview

Infrastructure from Code | 2

Table of Contents
3	 Introduction

4	 What is Infrastructure from Code

6	 How StackGen Works

8	 StackGen Concepts

8	 appStack

8	 Topology

8	 Generated IaC

8	 Locating Generated IaC Files

9	 Analyze, Visualize, Generate

9	 1. Analyze

10	 2. Visualize

11	 3. Generate

12	 Policies Applied

13	 Compatibility

13	 Summary

Introduction
In the rapidly evolving landscape of cloud-native application deployment,
“Infrastructure from Code” represents a pivotal advancement. This approach,
which automates infrastructure provisioning and management by analyzing
application code, is emerging as the next crucial step for organizations
seeking to enhance scalability, improve security and velocity, and ensure
consistent compliance.

As businesses increasingly rely on cloud
environments, traditional methods of managing
infrastructure through manual processes or static
scripts are proving inadequate. At the same time,
advancements in template-based automation
have not proven widely scalable beyond platform
teams to developers. Infrastructure from code
addresses these challenges by enabling dynamic,
programmable, and version-controlled infrastructure,
thereby streamlining deployment processes and
reducing the risk of human error.

One of the key advantages of infrastructure from
code is its seamless integration with existing
toolsets, making it the most straightforward path for
organizations aiming to modernize their infrastructure
pipelines. Whether it’s integrating with CI/CD workflows,
leveraging Infrastructure as Code (IaC) tools like
Terraform or OpenTofu, or utilizing configuration
management tools, infrastructure from code provides
a cohesive and flexible solution that enhances the
efficiency and reliability of cloud operations.

Furthermore, infrastructure from code is highly
adaptable, catering to both individual developers and
large-scale enterprise operations. For single users, it
offers an accessible way to manage personal projects
with professional-grade infrastructure practices.
For platform engineering teams within enterprises,
infrastructure from code facilitates consistent,
scalable, and secure infrastructure management
across multiple environments and applications.

This whitepaper delves into how StackGen is
providing Infrastructure from Code by first
demonstrating the transformative potential of
infrastructure from code, exploring its benefits,
implementation strategies, and integration
techniques. By adopting infrastructure from code,
organizations can achieve a new level of agility and
resilience in their
cloud-native journeys, positioning themselves for
sustained success in an increasingly competitive
digital landscape.

Infrastructure from Code | 3

What is Infrastructure from Code

Infrastructure from Code is built on the premise
that the application code is the source of truth.
IaC should be generated based on what the
application requires vs. retrofitting templated
IaC to fit the application.

Infrastructure-from-Code (IfC)
is an approach that creates,
configures, and manages cloud
resources understanding a
software application’s source
code, without explicit description.

At StackGen, Infrastructure from Code means
we scan application code, create a view of
the deployment architecture and apply all the
standards and policies required when generating
the IaC. We believe that Infrastructure from Code
should:

•	 Require no application code standard changes

•	 Help avoid learning new programming
languages, as IaC is generated based on
languages already in use

•	 Require no user to be an expert in
cloud architectures

•	 Apply least-privileged access controls by default

•	 Only create the infrastructure needed for the
application, no overprovisioning due to one-size-
fits-all templating

•	 Be easy, intuitive, and fit in your existing build-
deploy workflows

Infrastructure from Code builds upon and expands
the benefits of IaC. The principles of IaC are rooted
in automation, repeatability, and version control,
enabling infrastructure to be treated with the
same rigor and discipline as application code. By
writing declarative or imperative scripts, developers
and IT professionals can define the desired state
of their infrastructure, which tools like Terraform,
AWS CloudFormation, or Pulumi can then execute
to create and manage resources. This approach
ensures that infrastructure changes are consistent,
auditable, and reproducible, minimizing human error
and enhancing operational efficiency. Infrastructure
from Code holds these same principles and
harnesses the same technologies, but abstracts
away from scripts and configuration to enable
users of all experience levels to safely and efficiently
generate the infrastructure they need.

Infrastructure from Code is a paradigm that
automates the provisioning, configuration, and
management of IT infrastructure by generating
IaC that is more tightly aligned with application
code. In the words of Infoq.com:

Infrastructure from Code | 4

https://klo.dev/state-of-infrastructure-from-code-2023/
https://www.infoq.com/news/2023/02/infrastructure-code-cloud-manage/

A key aspect of infrastructure from code is the
move from templates to standards. Templates
are predefined configurations that provide
a quick and easy way to deploy common
infrastructure setups. They serve as blueprints
that can be reused and adapted for various
projects, ensuring consistency and speeding
up the deployment process. Underlying these
templates are standards. Standards refer to the
best practices and policies that govern how
infrastructure should be configured and managed.
Adhering to these standards ensures that all
infrastructure deployments are secure, compliant,
and optimized for performance. While templates
provide the ‘how’, standards define the ‘why’ and
‘what’ of infrastructure management, guiding
organizations toward more robust and scalable
implementations. Standards drive acceleration and
velocity of deployments. If the how (templates) can
be automated, platform teams are freed to focus
solely on the why and what (standards); this is the
goal of infrastructure from code.

For developers, infrastructure from code offers
numerous benefits. It simplifies the infrastructure
management process, allowing developers to focus
more on coding and less on manual infrastructure
configuration tasks. With infrastructure from code,
developers can easily spin up and tear down
environments as their application development
needs change, facilitating rapid development and
testing cycles. This agility accelerates the software
development lifecycle, enabling quicker iteration
and innovation. Additionally, infrastructure from
code is closely aligned with application versions.
It allows infrastructure changes to be tracked and
rolled back more easily if necessary, reducing the
risk of errors and improving the overall stability of
the development environment.

Enterprises stand to gain significantly from adopting
infrastructure from code. By codifying infrastructure
based on the application itself, organizations can
achieve greater consistency and reliability across
their IT environments, along with a ‘best fit’ approach
to provisioning. This is particularly valuable for
large-scale operations where manual configuration
is not only time-consuming but also prone to
inconsistencies, and over-provisioning. Infrastructure
from code enhances security and compliance by
automatically embedding policies directly into the
infrastructure code, ensuring that all deployments
adhere to organizational standards from their
inception. Moreover, the automation of infrastructure
management reduces operational overhead,
freeing up platform teams to focus on more
strategic initiatives. Ultimately, infrastructure from
code empowers enterprises to build more resilient,
scalable, and efficient infrastructure, supporting
their growth and digital transformation goals.

If the how (templates) can
be automated, platform
teams are freed to focus
solely on the why and what
(standards); this is the goal of
infrastructure from code.

Infrastructure from Code | 5

How StackGen Works
StackGen streamlines application deployment and infrastructure provisioning by generating IaC tailored
to an application’s requirements. StackGen automates IaC generation from application code while
enforcing golden standards and ensuring compliance with industry regulations.

By leveraging sophisticated analysis of Python and Java codebases, StackGen identifies an application’s
infrastructure requirements, including cloud dependencies, APIs, service configurations, databases, and
environment variables.

Using this analysis, StackGen generates Terraform or Helm charts, adhering to predefined golden
standards and policies. These standards encompass a wide range of regulatory frameworks such as SOC
2, HIPAA, NIST-CSF, PCI, and GDPR, as well as best practices for least privileged access, Identity and Access
Management (IAM), infrastructure security, and compliance validation. With StackGen, organizations
can ensure that their infrastructure deployments not only meet regulatory requirements but also follow
industry-leading security practices.

StackGen’s intuitive interface allows users to visualize the deployment architecture defined by their
IaC, providing insights into resource connections and dependencies. With the ability to drag and
drop resources, while ensuring all connections have necessary guardrails, StackGen empowers users
to validate and optimize their infrastructure configurations before deployment. This ensures that
deployments are efficient, secure, and compliant from the outset.

StackGen empowers users to
validate and optimize their
infrastructure configurations
before deployment.

Infrastructure from Code | 6

The platform seamlessly integrates with public and private repositories, Source Control Management providers
(SCMs), and local repositories. Furthermore, StackGen simplifies application management by extracting
application traits into a unified workload specification with versioning functionality.

Supported languages include Java and Python, and AWS and Azure are currently the primary supported
cloud platforms. Additional languages are being added and version specifications can be viewed here.
StackGen is compatible with popular CI/CD platforms such as Jenkins, CircleCI, and GitHub. StackGen also
supports Helm chart creation, enhancing Kubernetes applications’ deployment, and ensuring a seamless
transition to automated infrastructure deployment for development teams.

StackGen complements existing Secure Software Development Lifecycle (SSDLC) and policies and integrates
into existing workflows so there is no need to rebuild existing pipelines.

Users can try StackGen via the Developer Edition, a SaaS version or on-prem. Users can also use the StackGen
CLI to access all editions.

StackGen Workflow

Infrastructure from Code | 7

https://docs.appcd.io/reference#programming-languages

StackGen Concepts
There are three key features encapsulating StackGen’s process:

appStack
An appStack is a collection of components that
make up an application. These repositories, when
considered together, help StackGen understand an
application’s architecture and generate appropriate
IaC for provisioning and deploying the infrastructure
an application needs.

appStacks are currently limited to one cloud
provider and one cloud service. If a user wanted
to see infrastructure for an app on both AWS ECS
and AWS EKS, the user would need to create two
separate appStacks for the application.

When creating an appStack, users are prompted
to provide specific information to help StackGen
accurately analyze and set up an application’s
environment. Information required includes:

appStack Name
•	 Description: The unique name assigned to an

appStack for identification.

•	 Format: Enter a descriptive name without spaces,
which should be URL-safe.

Description (optional)
•	 Description: A brief overview of what an appStack is

and what it represents.

•	 Format: Free text field, optional for additional context.

Target Cloud Service
•	 Description: Specify the cloud service provider where

an application will be deployed.

•	 Options: Choose from cloud services like AWS, Azure,
EKS or AKS.

appStack Topology Generated IaC2 31

Topology
The Topology view in StackGen offers an interactive
representation of an application’s infrastructure
architecture. The topology is the primary way to edit
an architecture in StackGen. The various elements
available to build infrastructure are inferred from the
application code, such as services, databases, and
storage, and are visualized for quick review and easier
understanding of interconnections and dependencies.

The Topology view is dynamic, allowing users to
fine-tune parameters, add or remove resources,
and establish connections to accurately model an
application infrastructure architecture.

Generated IaC
StackGen automates the creation of IaC files,
crucial for the consistent and repeatable provisioning
and management of infrastructure. After analyzing
an application appStack, and getting any inputs
from the topology, StackGen produces IaC files
stored locally.

Locating Generated IaC Files
IaC generated through the SaaS version will
download to wherever a user has configured a
browser to download files.

IaC generated through the CLI will be directed to the
destination specified.

Infrastructure from Code | 8

https://docs.appcd.io/reference/appcd-concepts#appstack
https://docs.appcd.io/reference/appcd-concepts#topology
https://docs.appcd.io/reference/appcd-concepts#generated-iac
https://docs.appcd.io/getting-started/dev-edition

Analyze, Visualize, Generate
StackGen has three main functions: analyze, visualize and generate.

Key features include
Extract Traits: StackGen looks at the core of an application
component to extract all pertinent traits from the source
files. Whether it’s storage, network interactions with other
microservices, or connections to cloud provider services,
StackGen comprehensively analyzes and brings to light the
integral components of an application.

Deduplication: The deduplication process ensures that any
redundant traits extracted from different source files are
identified and removed. This streamlining step is crucial,
guaranteeing that the analysis is not only accurate but also
clutter-free, focusing solely on unique attributes that matter.

Manifest File Generation: Beyond simple analysis,
StackGen takes it a step further by generating a
detailed, combined manifest file. This file encompasses
a component dependency graph specification
alongside all extracted traits of components of the
application, providing a blueprint of an application’s
infrastructure needs and interactions.

1. Analyze
The analyze function applies to applications written
in Java and Python languages, with more coming
soon. It performs a static code analysis of source
code files, Dockerfiles, configuration files, and any
other relevant files in a Git repository. The static
analysis is a point-in-time process that temporarily
clones a user’s git repositories for analysis, identifies
what infrastructure is required during provisioning,
and then removes the clone. If the code changes,
a new analysis can be done and IaC updated with
version control features within StackGen.

Infrastructure from Code | 9

2. Visualize
Once the analysis is complete, StackGen
provides a visualization of the deployment
architecture. Visualizing the topology enables
insight into the entire system including its
dependencies and any policy violations
from dragged-and-dropped resources. This
visibility enables proactive monitoring and
management, allowing users to detect and
address issues before IaC is created, while still
minimizing inputs compared to templates.

Key features include
User Interface: The user interface displays the topology of
an application, derived from the analyzed traits. This visual
representation allows users to quickly grasp the complex
interactions within their applications, enabling informed
decision-making and streamlined infrastructure planning.

Drag and Drop: Users can enhance the deployment
architecture by dragging and dropping resources.
StackGen does not allow connections to meet unless
it complies with policies, and will call out defaults of
newly added resources that violate policies so they
can be fixed. Developers who want to build their own
architecture from scratch (bypassing the analyze step)
can use the visualization feature.

Validate: The topology is validated as the user interacts
with the deployment architecture to ensure it complies with
all standards. Policy violations are obvious and users are
prevented from exporting IaC until it is in compliance.

Well-Architected Framework: StackGen visualization helps
you achieve AWS Well-Architected Framework, a set of
foundational questions that help you to understand if a
specific architecture aligns well with cloud best practices.

Infrastructure from Code | 10

3. Generate
Built on the foundation laid by the analysis, StackGen
transforms the analyzed manifest file and topology
into IaC files (Terraform or Helm) tailored for a
seamless cloud deployment. StackGen supports
AWS, Azure, Kuberentes and local-clusters. This
doesn’t just transcribe the application’s needs into
code; it infuses the process with standards that
address security, compliance, and deployment
requirements. The file format allows direct
integration into existing pipelines, no need to retool.

Key features include
Access Control: StackGen offers robust access control
mechanisms. By generating IaC files that define minimal
access, it ensures that the various components or
microservices of an application have only the necessary
permissions, significantly reducing the attack surface.

Support for Deployment Scenarios: StackGen can
generate IaC files for single-node installations, multi-
node setups, or complex cluster deployments. This
versatility ensures that infrastructure can grow and
adapt alongside the application.

Customization and Best Practices: Understanding that
each application is unique, StackGen offers extensive
customization options for the generated IaC files. Tailor
resource names, bundles, and configurations to meet the
specific needs of a project, all while adhering to industry
best practices for infrastructure deployment.

Versioning: StackGen can manage the lifecycle of the IaC
deployment files by maintaining the different versions of the
IaC files. It can also provide a diff so users can track, monitor
and review changes over time.

Infrastructure from Code | 11

Policies Applied
During IaC generation, StackGen can apply AWS and Azure best practices through pre-packaged policies. By
applying policies at IaC generation, organizations can reduce risk by enforcing security and compliance at
creation. Both AWS and Azure policies by domain include:

AWS POLICIES BY FRAMEWORK AZURE POLICIES BY FRAMEWORK

AWS Security CIS

CIS for Azure, AWS, GKE in various levels NY-DFS

SOC2 AWS Security

GDPR CSC

Cloud Cost Management (CCM) CIS - Azure, GKE

PCI SOC2

NIST

HIPAA

ISO

AWS Well Architected Framework

NY-DFS

Infrastructure
security

Identity and access
management

Security Best
Practices

Messaging

Data Protection
Logging and
monitoring

Compliance
validation

Resilience

Infrastructure from Code | 12

Compatibility
StackGen is compatible with:

Summary
Infrastructure from Code represents the future
of IaC due to its transformative impact on agility,
reliability, and scalability in modern software
development and deployment practices. By auto-
generating infrastructure configurations and
management processes, infrastructure from code
enables organizations to automate and standardize
deployment workflows, reducing manual errors and
enhancing consistency across environments. This
approach not only accelerates the pace of software
delivery but also facilitates rapid iteration and
innovation by providing developers with the flexibility
to spin up and tear down infrastructure resources
on-demand.

Moreover, infrastructure from code aligns
seamlessly with DevOps principles, fostering
collaboration between development and operations
teams and promoting a culture of continuous
improvement. As organizations increasingly
embrace cloud-native architectures and dynamic
deployment models, infrastructure from code
emerges as the cornerstone for achieving efficient,
secure, and compliant infrastructure management,
positioning it at the forefront of IaC evolution.

StackGen provides organizations of all sizes the
generative infrastructure from code solution that
requires no application code changes and no
upheaval in existing processes. It allows teams
to create secure and standardized IaC without
introducing SDLC bottlenecks. From small-scale
applications to enterprise-level systems, StackGen
ensures that the deployment strategy is efficient,
secure and scalable.

Operating System
Windows, macOS, and Linux.

Cloud Providers
AWS, Azure and private clouds.
GCP and local clouds coming soon.

Git Repositories
Git repositories hosted on any Git
hosting provider, such as GitHub,
GitLab, and Bitbucket.

Programming Languages
Java and Python with Go, and
JavaScript coming soon.

Infrastructure from Code | 13

stackgen.com info@stackgen.com © 2024 StackGen All Rights Reserved

At StackGen, we want to enable every organization to securely deploy
applications without delay by being application-centric, cloud agnostic and
developer-first. Our mission is to remove the burden of infrastructure as code by
auto-generating it from the application with golden standards applied.

https://appcd.com/
mailto:info%40appcd.com?subject=

